A note on a generalization of eigenvector centrality for bipartite graphs and applications

نویسنده

  • Peteris Daugulis
چکیده

Eigenvector centrality is a linear algebra based graph invariant used in various rating systems such as webpage ratings for search engines. A generalization of the eigenvector centrality invariant is defined which is motivated by the need to design rating systems for bipartite graph models of time-sensitive and other processes. The linear algebra connection and some applications are described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalization of Villarreal's result for unmixed tripartite graphs

‎In this paper we give a characterization of unmixed tripartite‎ ‎graphs under certain conditions which is a generalization of a‎ ‎result of Villarreal on bipartite graphs‎. ‎For bipartite graphs two‎ ‎different characterizations were given by Ravindra and Villarreal‎. ‎We show that these two characterizations imply each other‎.

متن کامل

Unmixed $r$-partite graphs

‎Unmixed bipartite graphs have been characterized by Ravindra and‎ ‎Villarreal independently‎. ‎Our aim in this paper is to‎ ‎characterize unmixed $r$-partite graphs under a certain condition‎, ‎which is a generalization of Villarreal's theorem on bipartite‎ ‎graphs‎. ‎Also, we give some examples and counterexamples in relevance to this subject‎.

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

Use of Eigenvalue and Eigenvectors to Analyze Bipartivity of Network Graphs

This paper presents the applications of Eigenvalues and Eigenvectors (as part of spectral decomposition) to analyze the bipartivity index of graphs as well as to predict the set of vertices that will constitute the two partitions of graphs that are truly bipartite and those that are close to being bipartite. Though the largest eigenvalue and the corresponding eigenvector (called the principal e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Networks

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2012